cohésion entre les chaînes est assurée par les tétraèdres PO_{4} et MoO_{4}; l'ensemble forme ainsi un réseau tridimensionnel délimitant des tunnels dans la direction [010] où vient s'insérer le sodium.

Références

Ben Amara, M., Vlasse, M., Le Flem, G. \& Hagenmuller, P. (1983). Acta Cryst. C39, 1483-1485.

Danielmeyer, H. G., Blätte, M. \& Balmer, P. (1973). Appl. Phys. 1, 269.
Enraf-Nonius (1980). Structure Determination Package. EnrafNonius, Delft.
International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press. (Distributeur actuel D. Reidel, Dordrecht.)
Parent, C., Fava, J., Salmon, R., Le Flem, G. \& Hagenmuller, P. (1980). Solid State Commun. 35(5), 393.

Weber, H. P., Damen, T. C., Danielmeyer, H. G. \& Tofield, B. C. (1973). Appl. Phys. Lett. 22, 534.

Acta Cryst. (1987). C43, 618-620

Structure of the 1:1 Silver(II) Fluoride-Arsenic(V) Fluoride Adduct, $\mathbf{A g F}_{2} \cdot \mathbf{A s F} \mathbf{F}_{5}$

By D. Gantar and B. Frlec
Jožef Stefan Institute, Edvard Kardelj University, 61001 Ljubljana, Yugoslavia
and D. R. Russell and J. H. Holloway
Chemistry Department, The University, Leicester LE1 7RH, England

(Received 26 September 1986; accepted 11 December 1986)

Abstract

M_{r}=315.8\), orthorhombic, Pnma, $a=$ 7.585 (1), $\quad b=6.997$ (6), $\quad c=9.852$ (1) $\AA, \quad V=$ $522.9 \AA^{3}, \quad Z=4, \quad D_{x}=4.01 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.7107 \AA, \mu=97.3 \mathrm{~cm}^{-1}, F(000)=572, \quad T=293 \mathrm{~K}$, final $R=0.032, w R=0.033$ for 520 unique observed reflections $[I>3 \sigma(I)$]. The structure consists of an extended F -bridged $[\mathrm{AgF}]_{n}^{n+}$ chain with $\mathrm{Ag}-\mathrm{F}$ distances 1.995 (5), 2.004 (5) \AA, linked to $\left[\mathrm{AsF}_{6}\right]-$ anions by longer $\mathrm{Ag}-\mathrm{F}$ distances in the range 2.3942.439 (6) \AA.

Introduction. A number of hexafluoroarsenates of the type $M \mathrm{~F}_{2} . \mathrm{AsF}_{5}$ have been prepared (Birchall, Dean \& Gillespie, 1971; Dean, 1975; Golič \& Leban, 1977; Frlec, Gantar \& Holloway, 1982) and a structural investigation of the tin compound has been carried out (Golič \& Leban, 1977). X-ray powder photography for the series of adducts has shown that none of them is isostructural. However, the single-crystal work on SnF_{2}. AsF_{5} showed that the adduct contains cyclic $\left[(\mathrm{Sn}-\mathrm{F})_{3}\right]^{3+}$ cations of $D_{3 h}$ symmetry and $\left[\mathrm{AsF}_{6}\right]^{-}$ anions. The only previous structural information for AgF_{2}. AsF_{5} has come from Raman spectroscopy which indicated that the solid contains $\left[\mathrm{AsF}_{6}\right]^{-}$octahedra of $C_{4 v}$ symmetry or less.
The synthesis of the blue solid has been described elsewhere (Frlec, Gantar \& Holloway, 1982).

Experimental. Single crystals of the solid were grown from anhydrous HF solution in FEP-Tefion (per-fluoropropene-tetrafluoroethylene copolymer) tubes.

An irregular crystal (approximated to an eightfaceted block showing $\{011\},\{01 \overline{1}\},\{100\},\{110\}$, $\{\overline{2} 10\},\{2 \overline{1} 0\}$ and with approximate dimensions $0.24 \times$ $0.16 \times 0.14 \mathrm{~mm}$) was transferred under vacuum into a Pyrex capillary and sealed. The crystal was aligned about the b axis on a Stoe Stadi-2 Weissenberg diffractometer. Cell parameters were obtained by least-squares refinement of 28 h 0 l reflection 2θ values, $48<2 \theta<56^{\circ}$, which in turn were obtained by profile fitting well-resolved α_{1}, α_{2} step-scan data in the $\theta-2 \theta$ mode (a, c); b was obtained from $0 k 0$ reflection measurements. A total of 604 reflections with $7<$ $2 \theta<54^{\circ}$ from layers $k=0-8$ were measured by a variable ω scan with $\Delta \omega=(1.4+0.3 \sin \mu \cot Y)^{\circ}$ and a 42 s scan with two 10 s background measurements. No significant deterioration of the crystal was observed. Corrections for Lorentz, polarization and absorption (max. and min. transmission 37.6, 17.1\%) were applied. The structure was solved by Patterson and difference Fourier syntheses. Final cycles of full-matrix least-squares refinement included anisotropic thermal parameters for all atoms.* The final difference Fourier map was featureless apart from ripples $<1.2 \mathrm{e} \AA^{-3}$ near the Ag and As atoms. Final $R=0.032, w R=0.033$,

[^0]© 1987 International Union of Crystallography
$w=0.576 /\left[\sigma^{2}\left(F_{o}\right)+0.001\left(F_{o}\right)^{2}\right]$, quantity minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$ which showed an even distribution over $\sin \theta / \lambda$ and F_{o} ranges, $\Delta / \sigma_{\text {max }}=0.006$. Computer program used: SHELX76 (Sheldrick, 1976); atomic scattering factors from same source.

Discussion. The final atomic coordinates are listed in Table 1 and relevant distances and angles are given in Table 2. Fig. 1 shows a view of the environment of the Ag and As atoms, and Fig. 2 a stereoview of the crystal packing. Atoms Ag, As, F(1), F(2) and F(3) lie on a crystallographic mirror plane.

The crystal structure is built up from an infinite, F -bridged $(\mathrm{Ag}-\mathrm{F})_{n}^{n+}$ chain lying along the a axis laverage $\quad \mathrm{Ag}-\mathrm{F}(1)=2.000(5) \AA, \quad \mathrm{F}-\mathrm{Ag}-\mathrm{F}=$ $175.5(2)^{\circ}$ and $\mathrm{Ag}-\mathrm{F}-\mathrm{Ag}=143.3(3)^{\circ} \mid$, and $\left|\mathrm{AsF}_{6}\right|^{-}$ octahedra cross-linked to these chains via further F bridges. The Ag environment approximates to a pentagonal bipyramid with $F(1)$ atoms at the apices. Of the F atoms in the pentagonal plane (Fig. 1), two $F(4)$ atoms bridge to the same As atom $[\mathrm{Ag}-\mathrm{F}(4)=$ 2.438 (4) \AA], while one $F(2)$ and two $F(5)$ atoms bridge to different As atoms $[\mathrm{Ag}-\mathrm{F}(2)=2.439$ (6), $\mathrm{Ag}-\mathrm{F}(5)$ $=2.394$ (4) \AA]. The AsF_{6} ions are close to octahedral;

Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors $\left(\AA^{2}\right)$

$$
U_{\mathrm{eq}}=\frac{1}{3} \sum U_{i r} .
$$

	x	y	z	$U_{\text {eq }}$
	x	y	$0.56139(9)$	$0.0216(5)$
As	$0.29822(13)$	0.25000	$0.0186(4)$	
Ag	$0.13105(8)$	0.25000	$0.24264(6)$	$0.0186(3)$
$\mathrm{F}(1)$	$0.3849(7)$	0.25000	$0.1861(6)$	$0.032(3)$
$\mathrm{F}(2)$	$0.5031(9)$	0.25000	$0.4844(6)$	$0.040(3)$
$\mathrm{F}(3)$	$0.0992(9)$	0.25000	$0.6357(8)$	$0.059(4)$
$\mathrm{F}(4)$	$0.2294(7)$	$0.0808(7)$	$0.4453(4)$	$0.041(2)$
$\mathrm{F}(5)$	$0.3729(6)$	$0.0764(6)$	$0.6699(4)$	$0.040(2)$

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{F}\left(1^{\text {i }}\right.$) -Ag	1.995 (5)	F(2)-As	1.729 (4)
F(1)-Ag	2.004 (5)	F(3)-As	1.677 (7)
$\mathrm{F}\left(2^{\text {i }}\right.$) -Ag	2.439 (7)	F(4)-As	1.727 (4)
$\mathrm{F}(4)-\mathrm{Ag}$	2.438 (4)	F(5)-As	1.714 (4)
F(5ii)-Ag	2.394 (4)		
$\mathrm{F}(1)-\mathrm{Ag}-\mathrm{F}\left(1^{\prime}\right)$	175.5 (2)	$\mathrm{F}\left(2^{\prime}\right)-\mathrm{Ag}-\mathrm{F}\left(5^{\text {i }}\right.$)	73.8 (1)
$\mathrm{F}\left(2^{i}\right)-\mathrm{Ag}-\mathrm{F}\left(1^{\text {i }}\right.$)	87.1 (2)	$\mathrm{F}\left(2^{\text {i }}\right.$)- $\mathrm{Ag}-\mathrm{F}(4)$	150.8(1)
$\mathrm{F}\left(2^{\prime}\right)-\mathrm{Ag}-\mathrm{F}(1)$	97.3 (2)	$F(2)-A s-F(3)$	179.9 (1)
$\mathrm{F}\left(4^{\text {iv }}\right)-\mathrm{Ag}-\mathrm{F}\left(1^{\prime}\right)$	89.9 (2)	$F(2)-A s-F(4)$	88.9 (2)
$\mathrm{F}(4)-\mathrm{Ag}-\mathrm{F}(1)$	86.2 (2)	$\mathrm{F}(2)-\mathrm{As}-\mathrm{F}(5)$	88.6 (2)
$\mathrm{F}\left(5^{\text {i }}\right.$) $-\mathrm{Ag}-\mathrm{F}\left(1^{\text {i }}\right.$)	95.4 (1)	F(4)-As-F(3)	91.0 (3)
F (${ }^{\text {ii) }}$ - $\mathrm{Ag}-\mathrm{F}(1)$	85.9 (1)	$F(5)-A s-F(3)$	91.5 (2)
$\mathrm{F}\left(4^{\text {iv }}\right.$) $-\mathrm{Ag}-\mathrm{F}(4)$	58.1 (2)	$F\left(4^{\text {iv }}\right)-\mathrm{As}-\mathrm{F}(4)$	86.6 (2)
$\mathrm{F}\left(5^{\text {iij }}\right)-\mathrm{Ag}-\mathrm{F}\left(5^{\text {ij }}\right.$)	145.1 (1)	$\mathrm{F}\left(4^{\mathrm{iv}}\right)-\mathrm{As}-\mathrm{F}\left(5^{\text {iv }}\right.$)	91.6 (2)
$\mathrm{F}\left(4^{\text {iv }}\right)-\mathrm{Ag}-\mathrm{F}\left(5^{\text {ii }}\right.$)	77.6 (1)	$F\left(4^{\text {iv }}\right.$)-As-F(5)	177.0 (2)
$\mathrm{F}(4)-\mathrm{Ag}-\mathrm{F}\left(5^{\text {iii) }}\right.$)	135.4 (2)	$F\left(5^{\text {iv }}\right.$)-As-F(5)	$90 \cdot 2$ (2)
$\mathrm{Ag}^{\mathbf{v}}-\mathrm{F}(1)-\mathrm{Ag}$	$143 \cdot 3$ (3)	Ag-F(4)-As	$107 \cdot 6$ (2)
$\mathrm{Ag}^{\text {v }}$-F(2)-As	139.5 (3)		
Superscripts refer to the following transformations: (i) $x-\frac{1}{2}, \frac{1}{2}-y$ $\frac{1}{2}-z$; (ii) $\frac{1}{2}-x,-y, z-\frac{1}{2}$; (iii) $\frac{1}{2}-x, \frac{1}{2}+y, z-\frac{1}{2}$; (iv) $x, \frac{1}{2}-y, z$; (v) $\frac{1}{2}+x$, $\frac{1}{2}-y, \frac{1}{2}-z$.			

the single non-bridging $F(3)$ atom is closer $[1.677$ (7) \AA] than the remainder, which span the range 1.714 (4)-1. 729 (6) \AA.

The structure of $\mathrm{AgF}_{2} . \mathrm{AsF}_{5}$ is very different from that of AgF_{2} itself (Fischer, Schwarzenbach \& Rietveld, 1971) and from that of $\mathrm{AgF}_{2} \cdot 2 \mathrm{SbF}_{5}$ (Gantar, Leban, Holloway \& Frlec, 1987), in both of which the coordination around the Ag atom is probably best regarded as square planar. The average bond length of the $\mathrm{Ag}-\mathrm{F}$ bonds in the square plane about Ag in $\mathrm{AgF}_{2} \cdot 2 \mathrm{SbF}_{5}[2 \cdot 114(5) \AA]$ is a little longer than the equivalent in AgF_{2} [2.071 (6) \AA]. The average $\mathrm{Ag}-\mathrm{F}$ distance in $[\mathrm{Ag}-\mathrm{F}]_{n}^{n+}$ is somewhat shorter than both and probably reflects the cationic nature of the chain. The $\mathrm{Ag}-\mathrm{F}$ distances in the pentagonal plane about Ag in $\mathrm{AgF}_{2} . \mathrm{AsF}_{5}$ are of the same order as the elongated bonds in the $\mathrm{AgF}_{2} .2 \mathrm{SbF}_{5}$ structure li.e. $\mathrm{Ag}-\mathrm{F}\left(2^{\mathrm{ii}}\right)$, $\mathrm{Ag}-\mathrm{F}\left(2^{\text {iii }}\right)$ at $\left.2.431(3) \AA\right]$, but are shorter than those of the next nearest neighbours in $\mathrm{AgF}_{2}[2 \cdot 584$ (6) $\AA]$. This is a consequence of the small covalent interaction through F bridging anions and cations in the two adducts.

The observation of linear $(\mathrm{Ag}-\mathrm{F})_{n}^{n+}$ and cyclic $(\mathrm{Sn}-\mathrm{F})_{3}^{3+}$ chains in the structures of $\mathrm{AgF}_{2} . \mathrm{AsF}_{5}$ and $\mathrm{SnF}_{2} . \mathrm{AsF}_{5}$ coupled with the knowledge that none of the related metal difluoride adducts is isostructural, suggests that other novel cationic species may occur in this class of compounds.

Fig. 1. A view of the structure showing the Ag and As atoms.

Fig. 2. A stereoview showing the crystal packing.

The financial support of the British Council and the Research Community of Slovenia is gratefully acknowledged.

References

Birchall, T., Dean, P. A. W. \& Gillespie, R. J. (1971). J. Chem. Soc. A, pp. 1777-1782.
Dean, P.A. W. (1975). J. Fluorine Chem. 5, 499-507.

Fischer, P., Schwarzenbach, D. \& Rietveld, H. M. (1971). J. Phys. Chem. Solids, 32, 543-550.
Frlec, B., Gantar, D. \& Holloway, J. H. (1982). J. Fluorine Chem. 20, 385-396.
Gantar, D., Leban, I., Holloway, J. H. \& Frlec, B. (1987). J. Chem. Soc. Dalton Trans. In the press.
Golić, L. \& Leban, I. (1977). Acta Cryst. B33, 232-235.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Triclinic ReAl $_{\sim 4}$, a Periodic Domain Structure Variant of the Monoclinic WAl ${ }_{4}$ Type

By Julius C. Schuster* and Erwin Parthé
Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest Ansermet, CH-1211, Genève 4, Switzerland

(Received 30 June 1986; accepted 20 October 1986)

Dedicated to Professor Kurt Komarek, University of Vienna, on the occasion of his 60th birthday

Abstract. $\operatorname{Re}_{14} \mathrm{Al}_{57-x}$ with $x=2 \cdot 25, M_{r}=4145 \cdot 08$ (for 14/57), triclinic, $a P 71$ (for 14/57), $P \overline{1}, a=5 \cdot 159$ (1), $b=9.106$ (1), $c=23.755$ (2) $\AA, \quad \alpha=100.94$ (1), $\beta=$ $90.30(1), \gamma=93.00(1)^{\circ}, \quad V=1094.0(3) \AA^{3}, \quad Z=1$ (for $14 / 57$), $D_{x}=6.291 \mathrm{Mg} \mathrm{m}^{-3}$ (for $14 / 57$), $\lambda($ Мо $K \alpha)=0.71073 \AA, \mu=43 \mathrm{~mm}^{-1}, F(000)=1791$ (for $14 / 57$), $T=293 \mathrm{~K}, R=0.086$ for 2141 contributing independent reflections. $\operatorname{Re}_{14} \mathrm{Al}_{57-x}$ can be described as a stacking of two slabs, both about $11.6 \AA$ thick, one cut parallel to (110) and the second cut parallel to ($\overline{1} 10$) from the monoclinic WAl_{4} structure. In one unit cell of $\mathrm{Re}_{14} \mathrm{Al}_{57-x}$ two WAl_{4}-type slabs, one of each kind, are stacked parallel to (001). Two kinds of antidomain boundary are found, one with perfect match and a second with less perfect match which provides space for an extra Al site. However, since all Al atom sites at or close to the second antidomain boundary are only partially occupied, the overall composition, despite the extra Al site, has fewer Al atoms than expected for 1:4 stoichiometry.

Introduction. The binary system $\mathrm{Re}-\mathrm{Al}$, recently investigated by Schuster (1984), is characterized by the formation of six binary compounds which all decompose before melting. The structures of two compounds tentatively labelled ReAl_{3} and ReAl_{4} are unknown. We report here on the structure of the latter for which d'Alte da Veiga (1963) assumed a triclinic unit cell with $a=9 \cdot 13, b=13 \cdot 8, c=5 \cdot 16 \AA, \alpha=99 \cdot 5, \beta=94$ and

[^1]$\gamma=103 \cdot 5^{\circ}$. The cited author expected a close structural relationship between the triclinic ReAl_{4} structure and the monoclinic WAl_{4} type (Bland \& Clark, 1958) [found also with MoAl_{4} (Leake, 1964)] based simply on the presence of axes about $5.2 \AA$ along in both structure types, and he made a proposal how the ReAl_{4} cell could be fitted to the WAl_{4} cell. We shall see from our complete structure determination that there is really a close geometrical relationship between both structure types; however, the unit-cell relationship between ReAl_{4} and WAl_{4} proposed by d'Alte da Veiga (1963) does not hold. Only two unit-cell vectors of his proposed cell for ReAl_{4} are correct.

Experimental. A cold pressed powder mixture $\mathrm{Re}_{0.1^{-}}$ $\mathrm{Al}_{0.9}(\operatorname{Re} 99.99 \%, \mathrm{Al} 99.999 \%$) was arc melted under argon atmosphere. The particular composition was chosen to allow the growth of ReAl_{4} crystals at 1273 K . From the phase diagram ReAl_{4} is in equilibrium with liquid aluminium at this temperature. The heat treatment of the sample was made in an alumina crucible which was placed inside an evacuated quartz tube. After 48 h the sample was water quenched and the unreacted Al dissolved in HCl . The residue consisted of needle-shaped metallic crystals containing $20 \cdot 5-20 \cdot 7$ at.\% Re (by atomic absorption analysis). The only major impurity found by spectrographic analysis was silicon. The rather complex powder diffraction pattern indicated this phase to be related to, but not isotypic with, the WAl_{4} type. A needle with mean diameter of 0.015 mm and of 0.1 mm length (volume equal to that of a sphere of 0.0175 mm radius) was chosen.

[^0]: * Lists of anisotropic thermal parameters and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43583 (4 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * On leave from the Institute for Physical Chemistry, University of Vienna, Austria.

